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SUMMARY 

The canonical equations of motion In barycentrlc synodlcal 

Cartesian coordinates and momenta are Integrable by means of recurrent 

power series; these series are proved to be convergent for Initial 

conditions anywhere In the phase space except In the two phase planes 

of binary collisions. 

The Integration by recurrent power series Is extended to the 

variation equations. It Is used to compute the monodromy matrix 

associated to the fundamental period of a periodic orbit. A simple 

formula is derived, which relates the trace of the monodromy matrix 

and the characteristic exponents. 

These numerical methods are applied to evaluate the characteristic 

exponents of Rabe's Trojan Orbits; they are found to be of the stable 

type for the ovals, and of the unstable type for the horse-shoe shaped 

orbit. 

When the periodic orbit is symmetric with respect to the axis 

of syzygies, four independent variational solutions computed only over 

half the period are shown to be sufficient for evaluating the 

characteristic exponents. 
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1.  INTRODUCTION 

Steffensen (1956) has shown how the equations of motion for the 

planar Restricted Problem o f Three Bodies lend themselves easily to 

the integration by recurrent power series in the time. He has set up 

the algorithm for the Lagrangian equations in the jovicentric 

synodical coordinate system, and he proved that, with the exception 

of initial conditions right at a binary collision, the power series 

are convergent. 

These formulae, slightly modified on a minor point, were used 

extensively for the first time by Rabe (1961, 1962a, 1962b) in computing 

periodic Trojan orbits and long period ovals at L,  in the Earth-Moon 

system. A similar algorithm for thf Lagrangian equations in the 

barycentric synodical coordinate system has been proposed by 

Fehlberg (196A); he compared it with a Runge-Kutta-Nyström procedure. 

Even for an orbit of close approach to one of the primaries, 

Steffensen's method proved itself more accurate and time saving. 

We propose here to adapt Steffensen's ideas to the canonical 

equations of motion in the barycentric synodical coordinate system. 

This implies that we replace this fourth order system by a system of 

eight differential equations, all of the first order.  In the same 

manner as Steffensen did for the Lagrangian equations, we prove that 

the power series computed by recurrence are convergent for any set of 

a 



initial conditions, provided It does not belong to the phase planes 

(x ■ -y, y * 0)  or  (x ■ 1 - u, y •• 0)  of binary collisions. 

Then we extend the method to the variational equations.  These 

are linear equations whose coefficients are functions only of the 

coordinates along the reference orbit.  For simplicity of 

presentation, we think of computing first these coefficients in power 

series by recurrence, using the power series representing the 

coordinates along the orbit; then the variational equations are 

integrated in turn by the recurrent power series method.  We show how 

the computation can be controlled by the Jacobi integral to be 

verified by each variational solution; in the case when four independent 

variations are computed at the same time, a drastic check is provided 

by verifying at each step how the matrix of this fundamental system 

remains close to a completely canonical matrix. 

Now that we are able to compute accurately and efficiently the 

matrlzant (Danby 1964) along any orbit which is not on a collision 

course in the planar Restricted Problem of Three Bodies, we do not need 

to go through an approximate resolution of a second order differential 

equation of the Hill type (Darwin 1911, Message 1959, Rabe 1961) when 

it comes to computing the characteristic exponents of a periodic orbit. 

Indeed the characteristic roots are the eigenvalues of the matrizant at 

the end of the fundamental period, a matrix which is called by 

Wintner (1946) the monodromu matrix.     Several elementary properties of 



the matrix lead to a simple relation between its trace and the two 

non-trivial characteristic roots of the periodic orbit.  The stability 

of a periodic orbit is characterized quite simply by this trace Tr(T): 

if 0 < Tr(T) < 4,  the characteristic exponents are of the stable type; 

Tr(r) - 0 or Tr(T) ■ 4 give the two indifferent cases; in all other 

circumstances, the characteristic exponents are of the unstable type. 

For the sake of completeness, we show how this method of 

computing the characteristic roots is simplified in the case of 

a periodic orbit which is symmetric with respect to the axis of 

syzygics.  There we need to compute the matrizant over only half the 

period, and the characteristic roots are derived from the homomorphism 

axiom satisfied by the one-parameter group which the matrizant 

generates. 

These numerical methods are tested on Rabe's Trojan Orbits.  The 

initial conditions recorded by Rabe, the Jacobi constants and the 

periods have been converted from the jovicentric coordinate system and 

the units chosen by Darwin into the barycentric coordinate systems and 

the canonical uni s defined by Wintner.  Then for those orbits which 

need it, especially the horse-shoe shaped orbit, the initial conditions 

have been improved.  The characteristic roots are computed.  For the 

oval-shaped orbits, our results confirm the indication which Rabe drew 

from a coarsely approximate solution of the Hill's equation in the 

variation normal to the orbit.  However, for the horse-shoe shaped orbit. 
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whereas Rabe tentatively suggested a variational stability, we find 

variational  instability.     The disagreement  has been confirmed  in two 

ways:     on our  side, we  recomputed Rabe's horse-shoe orbit  by starting 

at a different  point on the orbit,   thus obtaining another matrizant, 

and we  found  this matrix to be equivalent, modulo a  similitude,  to 

the  previously obtained matrizant.     On his side,  Schanzle   (1965) 

recomputed  the Fourier series expansion of  the orbit  and  its associated 

Hill's equation;  he found  in its normal displacements  far more 

oscillations  than reported by Rabe.     In fact,  his analysis  shows clearly 

that  in this case,  conclusions drawn from second order  approximate 

solution of Hill's equation are just meaningless.    Also,  Schanzle applied 

the method devised by de Vogelaere   (1950)  and  Brillouin  (1948)   for 

solving numerically Hill's equation,  and he obtained  thereby characteristic 

exponents  of   the  unstable  type. 
If 

\ 
2.     EQUATIONS OF MOTION 

The canonical units for mass, length and time are adopted as they are 

defined by A. Wintner (19A6); the motion of the planetoid is referred to 

the barycentric synodical coordinate system.  Thus the planar Restricted 

Problem of Three Bodies is described by the llami 1 ton ian function 

(1)     3i  = hip*  + P.2) - (xp. - yp ) - ^-^ - JL 

x  'y     'y    x     D.   P 

where 



(2a) 

(2b) 

P1 - |(x + M)2 + y2^, 

P2 - |(x + M - I)2 + y2^* 

The canonical equations of motion 

Px + y. 

(3) 

p - x, 
y 

P - u^^ (1-w) -^ . 

admit the first Integral 

(4) c - -M(U - 1) - 2»; 

this Jacobi constant C  is so chosen that C = 3 at the equilateral 

equilibrium configuration whatever the mass ratio u  may be. 

With the introduction of the quantities 

(5) R - (1 - u)p^3, 
-3 

S ■ UP- , 

the canonical equations (3) may be replaced by a system of eight differential 

equations 



x • PX + y. 

y • py - x, 

pj^Pj ■ xx + yy -f MX, 

•       • 
P2P2 ■ xx + yy - (1 - y)x, 

P1R - -3Rplt 

P2S - -3Sp2, 

p - -(R + S)x + p - yR + (1 - VJ)S. 
x y 

Py " -(R + S)y - px 

which lend themselves in an obvious way to an integration by recurrent 

power series. 

The formal power series 

x »  x ^ x (fit;  , 
TTo   n P,   «   X^  r   (At)   , 

1       n 10    n 

y - 2^ yn(At>n. p2» XL*s (At:)n» 
n^O n^O 

px - z2 pn(At)n. R " 2^ Rn(At)n, 
n ^0 n >0    n 

py - E v")". S  «   X,  S   (At)" 

n 
are introduced into the differential equations and coefficients of  (At) 

are collected together for each n»0,l,2,... . In this manner, for each n 



one obtains the eight relations 

(n+l)x ., " p + y . n+l   n   n 

(n-»-l)y ^^ - q  - x , n+1   n   n 

St      (p+l)r ^.r        -      y.       (p+lXx  ..x        + y  .,y      ) + (n+l)ux       , <rri „ p+l n-p      nf~n p+l n-p      ^p+l^n-p n+1 0lPln 0lPln 

X      (p+l)s ^.s        -       y.      (p+l)(x^.x        + y .^y       )   -  (n+l)(l-^)x   .., ^^      VK        p+l n-p     „ ~* p+l n-p      ^p+rn-p n+1 

y.      (p+l)(3r ^.R       + r      * ^)  m 0 
n *~        r p+l n-p        n-p p+l 0 IP ln 

X      (p+l)(3s A1S        + s       S   ,.)   - 0, 
n ***        r p+l n-p        n-p p+l 0^ p <_n K r r  r 

(n+l)p   . -   - -        Xx(R        +S       )+q-uR+  (1-P)S   , rn+l _  ^^        p    n-p n-p n n n 0 IP ln 

(n+l)q   ..   " -        Xy(R +S       )-p. Mn+1 _  ^^     Jp    n-p n-p rn 0<p<nK K r 

Initial conditions evidently give 

x0 - x(0),   y0-y(o),   Po"Px(0)*   qo " V0*' 

the definition of the additional unknowns require that 

r0- |(x0 + U)
2 + y^.      R0.(l-.)r-3, 

s0- |(x0 + u- i)2 + y^l'
s.  S^MS"3. 

'^iatttmm* v. 
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Once the coefficients of degree    0    in    t^   are determined,   those of 

first degree are  computed from the  formulas: 

xi • po + V 

yi " qo ■ V 

Vi • (xoxi + V^ + uxi' 

Vi " (Vi + V^ ■ (1 ~ p)xi' 

roRi ' -3riRo' 

Vi = -^^o' 

Pi " -xo(Ro + so) + ^o - uRo - (1 - ^V 

^1 = ^0^0 + so) - Po' 

The recurrence steps from degree n ( >_ 1)  to degree n + 1 are given 

explicitly by means of the formulas 

(6a)  (n-K)xn+1 « Pn + yn. 

(6b)  (n+l)yn+1 = qn - xn. 

(6c)   (n+1)rorn+i %.p2n_1(p+1^ViVp+ViVp-ViVP
) 

+
 (n+l)(uxn+1+x0xn+1+y0vn+1). 

(6d)  (n+l)s()sn+1 -^S./P^^^p^nVVlVp-V^nV 

+ (n+l)(x0xn+1%yn+1-(l-.)xn+1). 



(be)      (n+l)r   R 1 nR ,,  - - ^L (p+l)(3rAlR      +r      R ^.i )-3(n+l)r   . .R., 
0 < fi^i - 1 P     n'p   n~p P 

(6f)     (n+l)s0Sn+1 « - 2     , (P+^^s^S      +s       S    ^-aCn+Ds^S^ 
0iPln"1 

(6g)     (n+l)p   ..   =  -       ^      x   (R ^ + S    ,,)  + q^ -  uR,, +   (1  -  u)S  . n+1 -   ^"^        p    n-p n-p n n n 0lPln 

(6h)    (n+Dq^, - -     ^    y„(R__^ + s_.) - p„. 
p 

'n+l n ^*     'P"  n-p n-p'       "n 0<p<n 

If the coefficients at each step are conputed in the order in which the 

above formulas have been written down, only known quantities will occur on 

the right hand side of the equations. 

In order to prove that, when T
n
s
r. t  0»  the power series are 

convergent, we introduce, for every  n > 1,  the notation 

n  n(n + 1) 

and we show that, for every n > 2,  the inequalities 

x  < xk f , r ' < rk c , 
n1 —  n ' n1 -  n 

y i < yk e , | s | < sk e , 
^n1 — ' n ' n' -  n 

|p | < pk fn, |R | < Rk cn, rn —  n n —  n 

q | 1 qk E", |S | 1 Sk cn, 
n     n n     n 

imply the inequalities 
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I 
(7a) 

(7b) 

I       -u        n+1 

n+l 

(7c) <   rk 
n+l 

n+1'   —      n+1 

n+1 
yn+lllykn+le       ' (7d) |sn+l'  -^n+l^'       ' 

(7«) iPn+1l  lPkn+1cn+1. (7e) |Rn+1l  lRkn+1cn+1. 

(7h) IVll  l^n+l^1' (7f) lSn+ll  ^kn+l^n+1- 

Dealing first with   (6a),  we  obtain 

(n + l)|xn+1|   1 (p + y)knen. 

hence  a sufficient  condition  for  the validity of   (7a)   is  that 

(p + y)k  r     <   (n +  l)xk       c 
n      — n+i 

Since 

n n+2 
(n+l)kn+1        n(n+l) 

1 2 2 
for    n >  2, 

the more  rigid  inequality 

(8a) 
2,-   *   -x j(p + y)   1 ex 

is also a  sufficient  condition  for  the validity of   (7a) 
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so that 

and 

n + 2o  - ~(n+l) 
n — 3 

n + 2o 
11  4(1 - -4-7) <   5/3, n + 3 - 3V   0+3' 

Consequently, (7c) is verified if 

(8c)       |(x2 + y2) + (M + |x0I)x + |y0|y <_  (r0 - |f)r. 

By symmetry, from (6d) we obtain as a sufficient condition for (7d) 

that 

(8d)       |(x2 + y2) + ((1 - u) + |x0|)x + |y0|y '_  (s0 - ^)s. 

We now address ourselves to (be).  Using the same relations and the 

same estimates as in the preceding case, we find that 

(8e) 3R0r <_  (r0 - ^F)R 

is a sufficient condition for (7e), and by symmetry that 

(8f) 3S0i 1 (s0 - 22i)S 

is a sufficient condition for (7f). 

At last we examine (6g).  We give it the form 

(n+Dp ^.   ' -x(R +S   )   -  x   (R„+Sn)  + q     -   uR    +   (l-u)S    -       S*       x   (R       +S       ) rn-H Onn nOO 'n n n,    Ä—     ,   p     n-p    n-p 1< p < n-1  r r r 
^       x   (R 
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so that we come to the inequality 

(nM)!p  J < k c [(R + S)|xJ + (Rn + Sr.)x + q + MR + (1 - u)S] 

1 <^p j^n-l  r 

Therefrom we deduce  that  a sufficient  condition for  (7g)   is  the  Inequality 

kn[(R+S)   x0    +   (R0+S0)x + q + UR +  (l-u)S]  + x(R+S)     ^       k  k  _    ! (n+l)k       pt . 
. ,   P  n-p — n+1 
1 < p < n-1  * 

But the identity 

n + 1 « (p+l)(n-p+l) - p(n-p) 

implies that 

(n+i)k k     . 1(1 + -i-) . -Irc-rr + -^rr) 
p n-p  n p  n-p   n+2 p+1  n-p-H 

and hence that 

1 2(n-l+2o  ,) 
(n+1)  Z^  k k 

l-Pl""1 P n"P    n(n+2) 

However, 

o . < n-1, n-1 —     ' 
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which implies that 

n-l-»-2o 
— < 3(1 - -) < 3, 

n    -     n 

Therefore, a sufficient condition for (7g) is that 

(8g)    |[(R + S)|x0| + (R0 + S0)x + q + uR + (1 - M)S] + 3x(R+S) <, pc 

By symmetry from (6h), a sufficient condition for (7h) is that 

(8h)    |[(R + S)|y0|+ (R0 + S0)y] + 3x(R+S) ± qt. 

Now that we found sufficient conditions to be fulfilled in order that 

the inequalities should be fulfilled recurrently, we have to check that they 

are compatible. 

To begin with, ( can always be chosen so large that (8a), (8b), (8g) 

and (8h) are satisfied no matter what values the constants possess. Also, 

it follows from (8e) and (8f) that we must choose 

r < 3r0/20,      i < 3s0/20, 

after which (8e) and (8f) are satisfied provided that we choose  R and S 

sufficiently large.  After this, (8c) and (8d) will be satisfied, if we 

choose x and  y  sufficiently small in comparison with r  and  s.  In 

thus choosing small values for x and  y,  we do not run into difficulties, 

because the inequalities (7) show that small values of these constants can 
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be compensated   by choosing     t      sufficiently   large. 

The   inequalities   (7)   being  satisfied   for  any    n  >_ 2,     the  recurrent 

series   (6)   are  dominated  each by  series of   the  form 

+  Bt  + C   2dk   t
n

t
n, 

n >_2    n 

which  is  convergent   in  the disk     |t(   <   1/t.     Thus  the  series   (6)   are 

convergent   in  this disk. 

3.     VARIATION  EQUATIONS 

We denote  by  the vector     6     the  displacements     (fx.cW.^p   ,^p   )     of 
x       y 

a  solution     t   ♦   (x(t),y(t),p   (t),p   (t))   of   the  canonical   equations   (3). 

This vector   is  determined  by  the vector variation equation 

(9) A  = V(t)<S. 

V(t)  is a  4 » 4 matrix function of the form 

(10) 

wherein 

(11a)    a(t) = - 
;(t) L       ^(t)    j   P2

3(t) [ p2(t)    j 



16 

(llb)       p(t)   .  3 -i^L. CxL^Ll ,)y(t) +  3 _±__ (x(t;  ^-  l)Y(t)   ^ 

Pj(t)        pj(0 P^t) P2(t) 

(He)       Y(t) 
pj(t) L P^Ct) J       p^t)    [ P2it) J 

The  variational  equations   (9)   are   the canonical  system derived  from 

the  Hamiltonian  function 

(12)     ^V»  '^P2 +   V)   -   ('^p     -   6y(Sp   )   - '.[.(t)^2  + 2e(t)(Sx6y + Y(t)6y2l. rxy y x 

Because   the  original  Hamiltonian  function  (1)   is  conservative,  the 

equations   (9)   verify  the Jacobi   variational   integral 

(13) r   =   ^ x •-— + ^ v • — +   ; p    •  +    p   •  
)X tv x      tp v      'P 

x y 

where  the  coordinates and momenta   in  the   partial derivatives   should  be given 

their  values   at   each   time  along   the   orbit. 

It   is  our   purpose  to  show  that   the  variational   equations  can  be   integrated 

by  recurrent   power   series  together  with   the equations  of   motion. 

For   simplicity  we   think  of   our   task  as   two-fold.     At   each   step of   the 

recurrence,   we   first   compute   the   coefficients   in  the  power   series   representing 

1,1«     and      y.      Then   by means of   the   variational   equations,   we  compute   the 
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corresponding coefficients   in  the power series represent-?ng  the displacements. 

The  recurrent  power series expansion of    a,3,7     requires several 

auxiliary variables.    The  selection may vary widely according to one's 

prejudices and predilections  in programming;   it  might  also be influenced by 

the kind  of mathematical  information one would  like  to draw on the  side  from 

the   integration.    We present  here a   list yielding  fairly elegant  recurrence 

formulas.     Our own eoniputer  program  actually uses  a   list  with  four  less 

auxiliary variables  needed.     Here we   introduce   in a   first   block 

• A  *  ^-^ , B » -X "^   '  1   . C - -^ , D - ^ 
pl p2 Dl P2 

and in a second block 

E « 1 - 3 A2,        G - AC, J - 1 - 3 C2, 

F = 1 - 3 B2,        H - BD, K - 1 - 3 D2. 

so that the time dependent coefficients in the matrix V  take the simple 

form 

u « -(RE + SF), 

t3 * 3(RG + SH), 

Y '  -(RJ + SK). 

We denote the coefficients in their power series in the natural way: 

= X A (At)". 
^"T»  n 

A ■ ^^ A (At) ,  and so on. 
n  0 
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As for the variations themselves, we have put 

6x - \ i(Lt)n
t 6px - 2*   ^n(

At)n. 
n^^) n >_ 0 

6v " ^rf nn(At)
n, <Sp - 2L *n(

At)n. 
n > 0 y  n > 0 

For n « 0,  the coefficients in the auxiliary series A  to K and In the 

functions,  a,ß,Y are computed from the initial conditions on the orbit, while 

they are determined in the variations from the chosen initial values for 

the displacement.  Once the coefficients of degree n have been computed 

for the coordinates and momenta along the orbit, and the displacements to 

the orbit, the coefficients of degree n + 1 are computed by means of the 

formulae (6) to be followed by four new sets of formulae.  The set that 

ought to be handled first is 

(14a) r An - x    - A        r      A  , 
On n      ,,     ^■"   .     n-p p 0^p^:i-l K  ' 

(Ub) s B    - x    - Sj        s      B   , 
On n      n    ***    ,     n-p p 

0 < p < n-1 

^        r      C   , 
*■■ n-p  p 

(14c) rnC    - yn -        <  
On n ^" n-p  p 

0 < p < n-1 ' 

(14d) snD^  «  y„  -        ^        s__„D_; 
On       ^n       rt    "^     .     n-p  p 

0 < p < n-1 l   ' 

then, the recurrence should go through the formulae 
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IK (15a)     E    =  -3        ,Zj     A A       • <15b)     F    =  -3 7.     ii Bn     . n n   ^*       p n-p n _    ^^       p n-p 
Opn 0^p<n 

1 

(13c)     G    - y.    AC       , 
n       ,,     ^^      p n-p 

0 < p ^ n 
1 (13d)     H 2 B D 

n      ^    —    P  n-p 
0 < p < n 

1 
0^Pln (l^p^n 

2 
before  the  coefficients of   the   time   functions   in  the  matrix     V    could  be 

computed  by 

(16a)      *«-        y.       (RE +SF       ) , 
n n ^*_ p n-p p n-p 

2 (16b)     ß     =    3      S.       (RG + S  H       ), 
n n ~

m p n-p p n-p 
0<p<n      K 

2 (16c)     >=-        vf.       (RJ +SK       ). 
" 0 T-  n       P  n"P P  n'P 

FinalIv   the   coefficients  of  degree     n     in  the  variational   solutions  are 

given   bv 

(17a)      (n  +   IK   J_1   •   n     + *   , 
n+I n n 

(17b)     (n +   l)n  ^^   =  -f     +  .   , 
n-»-J n n 
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(17c)  (n + l)i   = ,  +   X  (» :   + r n  n) , 
n+1   n  ,, ^"    p n-p   p n-p 

0 » p •' n  ' 

C17d)  (n + 1 ),,,,, = -:„ +  ^  (• ..■.._„ - »..• ..) n+1    n  - **^ p n-p   p n-p 
0 < p < n  ! 

A proof of the convergencL' for the series in the variations follows 

the same lines as the proof we gave in the first section of this paper. 

4.  CHARACTERISTIC EXPONENTS 

We consider the four solutions  A ,<5  ,6   ,6   of the variational 

equations which are determined respectively by the initial conditions 

'x^O) = 1,    dy^O) = 0,     6p*(0) = 0,     V (0^ = 0, 

•xII(o) = o,   ^vII(o) = i,   .ipII(0) = 0,   ^"(O) = 0, 
x y 

ixIII(0) = 0,   lv1II(0) = 0,   'p111^) = I,   ipIII(0) = 0, 
x y 

IV IV IV IV 
■x  (0) = 0,    V (0) = 0,    <Sp  (0) = 0,    vp  (0) = 1. 

X V 

We call  R(t;0)  the matrix whose columns are made of these four solutions; 

this is nothing else than the matrizant of the variational equations such 

that 

R(0;0) = \k 

(I.  denotes the  4 ' 4  unit matrix.) 
4 
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2 
or, since  S ■ I.,  the identity 

^(SR(-t;0)] = V(t)lSR(-t;0)]. 

Hence, using again the fact that  R(t;0)  is the natrizant of the variation 

equations, we come at last to the identity 

(23) SR(-t;0) = R(t;0)S. 

In particular, at time  t ■ T/2, 

SR(-T/2;0) = R(T/2;0)S. 

Therefore, the determinantal equation (20) takes the form 

(24) det(R(T/2:0) - sSR(T/2;0)S] - 0; 

it proves that the computation of the characteristic exponents for a 

symmetric orbit requests the integration of the variational equations over 

only half a period. 

This proposition has been stated first by Moulton (1914); but the 

proof he gives for it depends too closely on the particular problem he is 

dealing with, namely the orhital stability of Jupiter's satellite VIII, and 

it is incorrect on several points,  de Vogelaere (1950) has shown how to 

use it for extracting numerically from Hill's equation the characteristic 

exponents of a symmetric orbit.  We now propose to do the same for the 

solution of equation (24). 
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First we observe that the matrix identity (23) is equivalent to the 

scalar identities: 

^xI(-t) = 

I 

^xI(t), 

Av'(-t)  = -V(t), 

^D^-t) = 
X 

y 

-6px(t). 

II,   , II 
X  (-t) = -(SX 

6yn(-t) -  'v" 

II.    , II 
'p   ("t) =   tp 

X X 

II,   . II 

dx111^) » 

I III, , 
(Sy   (-t) = 

III ,      v 
^x  (-t) = 

. Ill,  v 6p   (-t) = 

III, . 
■6x   ^t). 

'yin(t), 

x ni, v 6px  (t). 

Ill, v •<Sp  (t). 

^xIV(-t) = 

^yIV(-t) = 

*pIV(-t) = 
X 

'p  (-t) = 
V 

tx 

-i v 

-Al 

t), 

t), 

t), 

t). 

V 
(t). 

(t). 

(t), 

VV(t) 
V 

Therefore, the determinantal equation (24) can be written explicitly as 

(25) 

1 II 
(l-s)^x (T/2)    (l+s)^x  (T/2) 

I 

(H-s)ApI(T/2) 

(l-s)^pI(T/2) 
y 

II 
(l+s)V(T/2)     (l-s)^v  (T/2) 

(l-s)>II(T/2) 
x 

(l+s)^II(T/2) 
v 

(l+s)lxII1(T/2) 

(l-s)WIII(T/2) 

(l-s)ApI1I(T/2) 
x 

(l+s)ApIII(T/2) 
v 

(l-s)AxTV(T/2) 

(l+s)'v1V(T/2) 

(l+s)pI\T/2) 

(1-s) p'V(T/2) 

= o. 

We put 

(1,2) (3,4)= [ ^xI(T/2)AyIV(T/2)-'xU(T/2)^vI(T/2)] 

[(SpII(T/2)Ap
TII(T/2)-lpni(T/2)-pII(T/2)l, 

X V X V 
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(l,3)(2,4)-(6xI(T/2)6pIV(T/2)^xIV(T/2)6p^(T/2)] 

[^yII(T/2)6pIII(T/2)-6yIII(T/2)^pJI(T/2)l. 

(l,A)(2,3) = ((SxI(T/2)^pIV(T/2)-6xIV(T/2)6pI(T/2)] 

[6yII(T/2)6pIII(T/2)6yIII(T/2)6pII(T/2)], 
Ä X 

(2,3)(l,4)-[6yI(T/2)6pIV(T/2)-6yIV(T/2)6pI(T/2)I 
A A 

[6xII(T/2)6pIII(T/2)-6xIII(T/2)<SpII(T/2)l, 

(2,4)(l,3)«[6yI(T/2)6pIV(T/2)-6yIV(T/2)6pI(T/2)] 

[6xII(T/2)6pIII(T/2)-6xIII(T/2)6pII(T/2)], 
A A 

I       IV       TV       I 
(3,4)(l,2)«[Ap1(T/2)6plV(T/2)-6pLV(T/2)6p1(T/2)) 

X        y X y 

(6xII(T/2)6yIII(T/2)-6xIII(T/2)6yII(T/2)l 

so that the determinantal equation (25) takes the form 

(26) (l+s)4(2,3)(l,4)+(l-s)4(l,4)(2.3)+(l-s2)2 

[(1,2)(3.A)-(1,3)(2,4)-(2,4)(1,3)+(3,4)(1,2))=0 

In this form we see that. In order for the characteristic equation to have a 

root equal to -fl,  it is necessary and sufficient that 
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(27) (2,3)(1,4) = 0. 

Moreover, the matrix R(T/2;0)  has a determinant equal to +1.  This 

determinant being obtained by making  s ■ 0  in (26), we obtain the 

relation 

(28) 1 - (1.4)(2.3) « (1.2)(3.M - (1,3)(2,4) - (2.4)(1,3) ♦ (3,4)(1,2) 

In view of (27) and (28), the characteristic equation (26) takes the 

simple form 

(l-s2)|(l-s)2(l,4)(2,3) + (H-s)2(l-(l,4)(2,3))| - 0. 

Consequently, the non-trivial characteristic roots are the solutions of the 

quadratic equation 

1 + 2(1-2(1,4)(2,3)]s + s2 - 0. 

As in    the general case, we write these two roots as 

Sj -je s2 - Je 

with j - 11,  so that 

(29) 1 + j coshCT - 2(1,4)(2,3). 

There ensues from it information concerning the stability of a symmetric 

periodic orbit; the conclusions are summarized in Table II. 
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TABLE  II.     VARIATIONAL STABILITY OF A SYMMETRIC  PERIODIC ORBIT 

AS DEFINED BY  ITS MONODROMY AT HALF THE  PERIOD 

n 

(M)(2,3) > 1 

(1.4)(2.3) - 1 

1/2 1 (1,4)(2,3) < 1 

0 < (1>4)(2,3) 1 1/2 

(l.A)(2.3) - 0 

U,4)(2,3) < 0 

real 

0 

purely imaginary 

purely imaginary 

0 

real 

+1 

+1 

+1 

even instability 

indifferent case 

even stability 

odd stability 

indifferent case 

odd instability 

6.      RABE'S TROJAN ORI.ITS 

In order  to numerically calculate  the  orbits described   in  this   section 

a double precision FORTRAN  IV program for computing asymmetric  periodic orbits 

in  the  plane  restricted  problem of   three  bodies was  run on  the   IBM  7094  computer 

In  addition  to calculating  the  basic  dependent   variables  of  an orbit   with given 

initial conditions,   the program provides  for  the calculation of   the  four  in- 

dependent  solutions     5   ,6     ,6       ,     and     6 of  the variational  equations.     If 

(for  a  given value  of   the  period)   the  initial   values are  such  that   the  orbit 

is  truly periodic,   the characteristic  roots  of   the periodic  orbit  may  be 

calculated.     If  the  orbit   is not as close  to  being periodic  as may  be desired 
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(i.e., if either  |x(T) - x(0)|, |y(T) - y(0)|, |px(T) - Px(0)[, or 

|p (T) - p (0)|  are larger than some given constant, such as for example 

-8       -10 10   or  10   ),  then the program provides for changing the initial 

conditions slightly so that an orbit will 1  obtained which is closer to 

bting periodic with the given period  T.  Of course, reasonable approximations 

to the initial conditions are necessary; it is not expected that the program 

will be asked to find a periodic orbit of given period starting with arbitrary 

guesses for initial conditions. 

In order to explain this method of "improving orbits to make them truly 

periodic" some simplifying notation will be used.  Let  xCtiXp,)  represent 

the vector whose four components are x(t;x ,y ,p  ,p  ), y(t;x ,y ,p  ,p  ), 
X0 y0       U U X0 y0 

p (t;x ,vn,p  ,p )    ^nd p (t;x ,y ,p  ,p ), where these four variables 
0 ^       y   u u x0 y0 

represent the soluticn of equations (3) with the particular initial conditions 

>I  -*        -»II  -»■   »III   »   tlV  -♦ 
(x0,y0,Px ,p ).  Similarly,  6 (t;x0), 6  (t;x0), i       (t,x0), *  (tJX0) represent 

the f^ur linearly independent solutions of the variational equations.  For the 

given period  T,  it is assumed that 

x(T;x0) * x(0;x0) 

although  these vectors are  not   "too   far"  from being  equal.     Considering  the 

first   crdei   variations,   it   is desired  to consider  solu:ions  of  the  form 

'30)     xitiK0 +  %)   «  x(t;x0)  + OL1 61 (t;x0)  + a26n(t;xu^ 

/ill,     -»   N   .        Jv.     >   , 
+ a36       (t;x0)  + a46     (t;xo) 

where    Av«    has  components     Ax.,,   Ay_,    '.p     ,   Ap 
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Setting    t  ■ 0    and  remembering  the  initial  conditions   (18),   it   is seen 

that  one must   have 

a1  -  Ax0 

a2 " Ay0 

a     -  Ap 
X0 

a      «   Ap      . 
4        yo 

If  it   is decided  to use the given  period    T    as a  fixed  quantity,  then  it 

will be desired  to  have the  solution  satisfy the conditions 

x(T;x0+ Ax0) « x(0;x0+ Ax0)  =  x0 + Ax0. 

Substituting  this and equations   (31)   Into equations   (30)   gives  the results 

(32)     x0 + Ax0 =  x(T;x0)  + AXQI^T;^)   + hv06Ll(lix0)  + Apx 6II1 (T;^) + Apy  6IV(T,x0) 

->• 
These  linear equations are solved  for  the components of  the unknown Ax^.     If 

-► -» 

the new guesses    xn 
+ Axn    for initial  conditions  still do not  produce a 

satisfactory periodic orbit,   the  process may be repeated.     There  is,  however,   a 

limit  on how extremely close  to a  periodic  orbit  one can come  by means of  this 

iterative  procedure.     In general,  we  found  that with  16-place  arithmetic  we 

could  ensure   that   no component  of     x(T,xn)     would  differ  from  the corresponding 

-♦       •♦ -10 
component  of     x(0.Xo)    by more than     10       .     However,   if much  better  initial 

guesses are  known  and used,   the  equations   (32)  become  extremely   ill-conditioned. 
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If we had an exact periodic orbit,  x, would equal  x(T;xn), and 

equations (32) would become precisely equations (20) with s ■ +1.  That 

is, if we try to solve equations (32) under these conditions, it means that 

we are trying to find an eigenvector (corresponding to the known eigenvalue 

+1) for the matrix R(T;0). 

In describing his Trojan orbits, Rabe uses a jovicentric synodical 

coordinate system.  The mass of the sun is taken as unity and the period of 

Jupiter is  27T*/1-U.   If we use asterisks to represent variables used by Rabe, 

the transformation equations giving our units in terms of Rabe's are 

x * 1 - u - x* 

y = -y* 

dt     dt* 

^-T* 
/1-u 

C - (l-u)C*. 

The orbital values given in Tables I and II of Rabe (1961) and Tables I and II 

of Rabe (1962) were transformed by means of these equations and by the equations 

dx 
Px" dT" y 

r
 y  dt 



34 

to give the Initial values in Table III and the values of T and C given 

in Table IV. 

In each case, the period  T as given in Table IV was taken as a fixed 

parameter, and a more accurate periodic orbit was calculated as described in 

the preceding paragraphs.  For these new orbits, the characteristic roots 

were calculated.  In Table V are given the new initial values for the periodic 

orbits.  Table VI lists the Jacobi constant as well as the trace of the 

monodromy matrix and the characteristic roots corresponding to the periodic 

orbit. 
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TABLE   III.     STARTING  VALU-S  FOR PERIODIC  ORBITS--fabe'S  results  transformed 
(to the units  of   this  paper 

Rabe's 
Perameter 

d 
o 

xo ^0 ^0 Vo 
.0025 .500296124643 -.868190470 .864939351691 .498421029587 

.0030 .501546124643 -.870355530 .863857161536 .497798523295 

.0075 .502796124643 -.872520600 .862778849534 .497178495820 

.0100 .504046124643 -.874685658 .861704291736 .496561161060 

.0125 .505296124643 -.876850720 .860633590098 .495946217159 

.0150 .506546124643 -.879015780 .859566642668 .495333906001 

.0175 .507796124643 -.881180850 .858503443453 .494724073660 

.0200 .509046124643 -.883345912 .857444086401 .494116614187 

.0225 .510296124643 -.885510980 .856388739438 .493511365658 

.0250 .511546124643 -.887676040 .855340133254 .492908300088 

.0275 .512796124643 -.889841100 .854287389045 .492306843750 

.0300 .514046124643 -.892006166 .853245632595 .491707425438 

,0400 .519046124643 -.900666420 .849111400136 .489392102889 

.0500 .524046124643 -.909326674 .844638938108 .487334093530 

.0600 .529046124643 -.917986928 .840686966660 .484695798129 
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TABLE  IV.     PERIODS AND  JACOBI  CONSTANTS   (using   initial conds.   in Table   III) 

Rabe's Parameter 

"o 

.0025 

.0050 

.007 5 

.0100 

.0125 

.0150 

.0175 

.0200 

.0225 

.0250 

.0275 

.0300 

.OAOO 

,0500 

,0600 

Period 

T 

78.1182A642410334 

78.21241134561734 

78.37095698004493 

78.59711486899776 

78.89553723182391 

79.27284722811138 

79.73765896723368 

80.30133787108203 

80.97856094134159 

81.79018812928275 

82.75360773001720 

83.91284074382773 

91.82099333962959 

117.7920128526034 

183.5145658929861 

Jacobi Constant 

3.0000046197401 

3.0000184246002 

3.000041333/195 

3.0000732673572 

3.0001141457676 

3.0001638928252 

3.0002224296547 

3.0002896819513 

3.0003655816422 

3.0004502334866 

3.0005428247134 

3.0006443168953 

3.0011363774494 

3.0017245907688 

3.0024430527304 
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TABLE V.     STARTING  VALUES  FOR  PERIODIC  ORBITS   (PRESENT  RESULTS) 

Rabe's Parameter 

do 
(approximate) 

1.0025 

1.0050 

1.0075 

1.0100 

1.0125 

1.0150 

1.0175 

1.0200 

1.0225 

1.0250 

1.0275 

1.0300 

1.0400 

1.0500 

1.0600 

0 '0 ^O 

500294701009      -.868189394186       .864940407774 

Vo 

,498420857938 

.501546202315 -.870355763449 .863857082677 .497798432577 

.502795932420 -.872520424844 .862778961872 .497178566762 

.504046133194 -.874685581794 .861704299953 .496561215540 

.505296118194 -.876850529922 .860633607448 .495946396251 

.506546050763 -.879015868171 .859566684583 .495333815576 

.507796128489 

.509045980033 

.510296189709 

.511545765989 

-.881180842237 ,858503483592       .494724052434 

-.883346025885       .857444171146       .494116467086 

-.885510985492       .856388586745 

-.887676141744       .855340268383 

.512795779277      -.889841341844       .854287586217 

,493511547160 

,492908273233 

,492306477874 

.514045824807      -.892006380486       .853245786222       .491707120286 

.519045209040      -.900666970996       .849111898087       .489391219068 

524045017193 

529053778602 

-.909327242850      .844639557053       .487333137683 

-.917980837710      .840684004699 ,484703533306 
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TABLE VI. JACOBI CONSTANTS, TRACES, AND CHARACTERISTIC ROOTS USING 

INITIAL CONDITIONS FROM TABLE V AND WITH SOME PERIODS AS 

IN  TABLE   IV 

Rabe's  Parameter 

d0 
(approximate) 

1.0025 

1.0050 

1.007 5 

1.0100 

1.0125 

1.0150 

1.0175 

1.0200 

1.0225 

1.0250 

1.0275 

1.0300 

1.0400 

1.0500 

1.0600 

Jacob!  Constant 

C 

3.OOO0046137 301 

3.O0O0184264690 

3.OOO0413312188 

3.0000732665714 

3.0001141435380 

3.0001638941519 

3.0002224306764 

3.OO02896834712 

3.0003655812550 

3.0004502346940 

3.0005428266252 

3.0006443182264 

3.0011363784399 

3.0017245910778 

3.OO24430503909 

Trace 

.43885321 

.32970410 

.17882263 

.04109871 

.00832747 

.21110820 

.79229906 

1.81711725 

3.09222181 

3.96383295 

3.44565407 

1.33281279 

.11223160 

1.17049332 

4.07526522 

Characteristic Roots 

-.78057339 ♦ .625064141 

,83514795 1 .550025371 

91055869 l .413313741 

97945065 

-.99583627 

■f  9 201683991 

,091159931 

-.89444590 1 .447176171 

,60385047 797097621 

-.09144138 1 .995810461 

54611090 1 .837712891 

,98191648 t   .189314641 

72282704 ♦ .691029001 

33359361 t   .942716981 

-.94388420 1 .330276581 

-.41475334 1 .909933881 

1.3145467 and.76071849 
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» I 
Fig. 1.  Variation 6x  for Trojan Orbit (C = 3.0000603664498 and 

T = 78.505049A8179581)  versus time (the unit of time is the 

period  T). 
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The orbits described by the parameters in Tables V and VI are 

practically the same as Rabe computed.  The only reason we refined them 

slightly using our methods and lb-place arithmetic was to enable us to 

calculate the characteristic roots with good accuracy; this point will be 

discussed later.  The fact that the entries in Table V are quite different 

from corresponding entries in Table III does not mean that the orbits 

themselves are very different; our iteration method has merely allowed for 

starting at a slightly different point on the orbit.  The only real difference 

between the orbits is due to the fact that we took Rabe's 5-decimal place 

value for the period as being an exact constant, and found the more accurate 

orbit which has this exact period.  Another indication that there is not too 

much difference between Rabe's original orbits and our modified ones is that 

the Jacobi constants as given in Table IV do not differ from the new Jacobi 

-9 
constants as given in Table VI by more than 6 » 10 

In the way in which our computer p'ogram was used for the cases represented 

in the tables, the number of terms of the series was fixed at from 16 to 20. 

The step size was then determined so that none of the last three terms in any 

of the series would be more than  10   . At the end of the orbit, the number 

of terms taken in the series might in some cases be diminished in order to keep 

underflow from occurring.  We considered an orbit to be periodic if no 

>        > 
component  of     >(T,xn)     differed  from  the corresponding  component   of     ■(0;.   )      * 

by more  than   10       .     The Jacobi  constant  associated  with   the  solution of   the 

equations  of   motion  remained   the  same   to  fifteen  significant   figu.es.     The 
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Jacob!  constants  associated with   the variational  equations remained  the 

same  to  eleven deciral  places.     The equations(19)  were   satisfied with 

-9 
residuals  at  most     10 

In  integrating the equations of motion it  is feasible to use other 

methods  of   numerical   integration,   although probably  more machine time 

would  be   involved.     The power   series method becomes  relatively more 

advantageous when  integrating  the variational equations.     The  solutions 

of   these  equations are highly  oscillatory  in nature,  and a high order 

numerical   integration method   is   essential  if  an extremely small  step  size 

and multiple precision in adding on the  increments   is not  to be required. 

Figure   1   shows a sketch of  the  four components of  one variational equation 

solution.     The points showing on  one  curve  are  those which were required 

to be calculated by the power  series method using  16 terms of  the  series. 

(In actually drawing the curves.   Intermediate points were also calculated 

so as  to  present  the  true  shape  for   Illustration.)     Since the basic orbital 

variables  occur   In the variational  equations,  the  step  size  required  for 

integration of   the variational  equations Is then the  step size for the whole 

problem when the  Integrations are done together  in an efficient manner. 

In many  types of  problems,   loosely approximate  solutions of  variational 

equations may  be  sufficient,   but   In  thl? rase  it   is   Imperative that  the  values 

of   the   four variational   solutions be  kno^r   "Ight  at   the end  of the period. 

Because  of  the   rapid changes   in  the   four  solutions,   the trace of  the .»atrlx  of 

the  solutions  also changes  rapidly,   and  the calculated  characteristic   roots 

would not  be correct  If  the orbit were not very close  to being periodic  and  11 

the variational  equations were not  solved very accurately.     In order to be 
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absolutely sure that the accuracies described in the previous paragraphs 

were indeed good enough to permit determination of the characteristic roots 

accurately, we chose initial conditions which were approximations to 

orbital values at various parts of the orbit.  When truly periodic orbits 

were obtained using these initial conditions as first guesses, it was found 

that the calculated characteristic roots were the same to eight decimal 

places as t ey were when a start was made at a different point on the orbit. 

In accordance with the criteria given in Table I, the results in 

Table VI show that all of Rabe's orbits are stable except the last one.  The 

stable orbits are of oval shape.  The one unstable orbit is of horseshoe 

shape.  It is evident from looking at the columns listing the trace and 

the characteristic roots that as the periods of the various orbits increase, 

the characteristic roots travel around on the unit circle.  There will be 

points of "indifferent stability" as indicated in Table I when the path of 

the roots actually hits the point  -1 or 41. 
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APPENDIX:     COMPUTER  PROGRAM WRITE-UP 

Program  36 -  "Non-symmetric  orbits  with  variational   solutiuns" 

1.     General   Information 

A. Purpose 

The purpose of this program is to calculate accurate 

periodic orbits in ehe plane restricted problem of thrre 

bodies.  Four independent solutions of the variational 

equations may also be computed so that the characteristic 

roots associated with the orbit mav be obtained. 

B. Restrictions 

1. This is a FORTRAN IV program which has been run on 

an IBM 7094 under the IBSYS system in which tape 5 is the 

input tape, tape 6 is the output tape for printing, and 

tape 14 is the output tape for punching. 

2. All input variables are either fixed point numbers or 

double precision floating point numbers. 

3. For a desired orbit the exact period must be j^iven. 

Approximate initial values of  x,y,p ,  and  p  are also 

required; arbitrary starting values will in general not be 

good enough. 

4. If one asks for extreme accuracy in finding a periodic 

orbit, the program will obtain orbits which are closer and 

closer to being periodic for a while, and then next orbit 
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or orbits will not be so good again.  The reason for 

this is given on page 34.  Thus if guesses for initial 

conditions are originally extremely good, the next 

supposedly improved guesses will not be as good.  In 

this regard, the values of the FORTRAN variable C7 has 

the effect of determining whether or not these factors 

are a problem in a particular case. 

C.  Method 

1.  Mathematical Method 

This is described in the main body of the document. 

However, as stated there, some of the actual equations 

used in the computer program are slightly different from 

those given in the body of the document.  There are 4 

dependent variables in equations (3); in the 4 independent 

solutions of the variational equations (9) with initial 

conditions (18), 16 more dependent variables occur.  In 

using the recurrent power series method for solving the 

20 equations, we here introduce 13 auxiliary variables as 

follows (instead of 17 as described earlier): 
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(35) 

w 

g 

h 

C 

D 

R 

x    + 2 ux + VJ 

xy + uy 

2 
a + y 

1/w 

 1  
w -  2x +  (1 - 2^) 

1  -  3ga 

1  -  3ha + 6hx -  3(1 - 2u)h 

gd 

hd  -  hy 

(1 -  u)g 

L3/2 

L  =  RA  ■♦■  SB 

N  -   3RC  ■»■   3SD, 

(36) 

it   is  seen  that   in most  of   the definitions  the  right-hand 

side only consists of   linear combinations of  products or 

quotients  of   at  most   two of   the  other variables.     In   the  case 

of     R    and     S,     the  equation may  be differentiated  so  that 

2KR  -   iR* 

2hS  =•   3Sh 
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which will also be  satisfactory for  the recurrent  power 

series method. 

In all  we  have   33 variables  to consider,   (20 desired 

dependent  variables  as well  as  the   13  auxiliary  variables 

discussed above).     Each  of   these variables   is  considered 

as a  power series.     For  example. 

and 
n » 1 

n-1 

-2   x   <At)n"1- ^■4     n n-1 

If  convenient,   the  coefficients of   the  power   series use 

the  same  symbol  as  the  dependent  variable   itself   but  are 

subscripted with an    n.     The exceptions to this  show up 

in  the definitions 

x      ^"r    n n 

n-1 

n»l 

-1 

6x (i)  -2 k(i)(At)n-1,       i  -  I,II,III.IV, 

*v (i) r^Cfit)"" ,     i - i,ii,in,iv, 
n 
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6p (I) u   (At) 
n 

i - 1,11.II.IV. 

6p 
n-1 

i - I.II.III.IV. 

When these power series are substituted into 

equations (35) (or (36)] and into the equations of 

motion (3) and in the variationai equations (9). and 

the corresponding powers of  At are equated, the 

following recursion formulas are obtained: 

(37.1) 

(37.2) 

nx .  ■ p + y 
n+l   n   n 

n>r  . ■ q  - x 
n+l  ^n   n 

(37.3) a ., ■ 2nx .. + 7.  x^ ._ 
n-fl     n+1 +*4    j n-»-2-j 

(37 .4)        w     aa     +     S      v   y 
n+1   n+l 4-4  yJyn-»-2-J 

(37.5)     g 
n+l " " w, +4  Wj8n+2-J 

1 "'-• 

(37.6)     h  , • h. ,£. (2x4h A- . - w4h A- J ml   1 +*i        j n+2-J   J n-»-2-j 
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(37.7) Rn+1  - Y^K+l'l  "    n ^^j+l^l-j-^j + lVl-J 

(37.8) S 
n-»- 

1-^J3hn+1S1-iUJ12SJ+1hn+1.J-3hj+1Sn+1.j 

(37.9) dn+,   '  ^n+1  
+ & XjVn^-j 

(37.10) An+1   -  "3 Zu «jV2-j 

(37.11) Bn+1 
B   .,   =  -3(1-2.)h_1   -   3 ^  (hja^.j  -  2hjxn+2.j) 

n+1 

(37.12) C
n^l   * ^ KlWj 

(37.13) Vl   ' ^^j'n^-J   "  VnW 

(37.14) ^  « ^  (Vn^^j  ^ SJV2-J) 

(37.15) N^ N   .,   -  3Z.(RjCn+2.j  
+S

JV2-J
) 

(37.16) np - q     -  uR    ♦   (l-u)S    - 2d  (R1  ^ S1 ^n+l      Mn n n      *^      J J 
)x 

n-H-j 
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(37.17)     nq 
n+1 -pn- (RJ + ^^n.l-J 

(37.18)     nk (i) 
n+1 n     n i - I,II,III,IV 

(37.19) n,(i)._k(i)+v(i). 
n+1    n     n 1 - I,II,III,IV 

(37.^0)     nu 
n+1   n 

(37.21)     nv (1) 
n+1 n 

k(i)   +,>N£(i) 

j n+l-J +^N
j
£n+l-j' 

1 - I,II,III,IV 

+ ^N k(1) + X^jkn+l-j. 
1 - I,II,III,IV, 

The known initial conditions are the quantities v  v^p , 

(38.1) a1 - (Xj + u)' 

(38.2) 

(38.3) 

wj " a1 + y1 

g1 - 1^ 

(38.4) 
1  w1 - 2x + 1 - 2u 

(38.5) «!-(!- u)g1 ^ 
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(38.6)      S « uh1 /h^" 

(38.7)      d1 - (x1 + u)y1 

(38.8)      A1 • 1 - 3g1a1 

(38.9)      Bj - 1 - 3h1(a1 - 2x1 + 1 - 2^) 

(38.iO)      C1 - gldl 

(38.11)      D1 - hl(d1   -  yj) 

(38.12)      L1 - R1A1 + SJBJ 

(38.13)      N1 - 3(R1C1 + S^^ 

Now equations (37) may be used in the order listed to 

obtain the second coefficients In each series, etc.  When 

the program is> being run in the mode in which cnly the 

equations of motion (and not the variational equations) are 

being solved, equations (37.9) through (37.15) and 

equations (37.18) through (37.21) as well as equations 

(38.7) through (38.13) are not tsed in the recurrence 

process. 

For the mathematical method of improving the "periodic" 

orbit and for obtaining the characteristic roots associated 

with the periodic orbit, see the explanation in the main tody 

of the document. 
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2.  Coding Method 

IBM 7094 FORTRAN IV. This program and its subroutines 

make maximum use of COMMON storage. We have desired to run 

many similar types of problems without changing much of the 

program.  For this reason there are many COMMON variables 

available which w*»re not actually used in this version of 

the program.  These show up as being undefined in the listing 

of what each COMMON variable represents. 

COMMON Variables 

Note; A(1,I) thru A(9,I) are usually as defined below. 

However, at the end of the orbit under the control 

of subroutine ENDOR, they are used as matrix elements. 

A/I T\ *u       A/io TN i1 „I  I I       ill „II  II  II A(1,I) thru A(12,I) x^y^p^q^      k^^.Uj.v^,      l^ .^ ,ui ,v1 

AZ-IT     T\      -U A/O/      T\ .^I      »U! HI HI ,   IV     „IV IV IV A(13,I) thru A(24,I) l^ tii     ,ui  ,vi  ,  k^ ,ii   ,u1 ,vi ,  a^w^g^*^ 

A(25,I) thru A(33,I) R^S^d^A^      Bi,Ci.Di,Li       Ni 

A(34,I) thru A(49,I) 

A(50,I) R1 + S1 

B(l) thru B(12)       x,y,p ,p ,   6x ,6y »6p ,6p ,    6x  ,6y  ,^p  ,6p 
y x  y x   y 

p/i^ *u    D/onN    x  in x m x  in x m  x IV . IV  IV IV 
B(13) thru 8(20)      6x  ,6y  ,6p  ,6p  ,  ^x  ,6y  ,6p ,tp 

x    y x   y 

B(21) thru B(50) 
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C(l)   thru C(5) x(0),y(0),p   (0),p   (0), Jacob! Constant at     t-O. 
x    y 

C(6) thru C(50) 

E(l) Trace of monodromy matrix 

E(2) Real part of 1st characteristic root 

E(3) Imaginary part of 1st characteristic root 

E(4) Real part of 2nd characteristic root 

E(5) thru E(50) 

F(I) 

GI(I) i 

GII(I) 1/1 

S(I) (At)1'1 

x(I) 

y(I) 

z(I) Erasable storage.  (However, at the end of an 
orbit,  z(I) _is carried to subroutine ORBIT 
through subroutines MATR, CUES, and ENDOR) 

Cl,C2 

CJ Parameter used to help determine  At.  (Kaking 
C3  smaller improves accuracy attainable).  C3 
is usually chosen between  .1  and  1.  and 
mostlv about  .25. 
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N Running variable  (N « 1,M) 

Nl If  Nl ■(,>,  the program prints < .yi variables 

at intermediate points on orU<t. 

N2 If N2 ■<!• 0"Jy0H variables are calculated. 
(2, all 20) 

N3 A counter to compare with M3 

NA If  N4 -|°i.  subroutine PRNT | Jj n0tl called by 

subroutine ORBIT. 

N5 Ordinarily N5 - 0.  Subroutine SETDT sets N5 = 1 
when it has found a suitable At  which will just 
end an orbit. 

N6 

N7 If  N7 

N8 

Q.R 

U.V.W 

xl thru xlO 

1; there is now no) ,     .,     ,     .         c I intermediate printing of 
,,  .    .       I variational quantities. 
2; there is now  j 

N9 Max. number of times POWER may still be called. 

N10 

Ax0! 

independent variable (time) 
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PRNT — This routine prints the orbital parameters 

for the given value of  t. 

ENDOR — At the end of the orbit, this routine calculates 

and prints residuals in checking equations (19). 

It calculates and prints the trace and the 

characteristic roots.  Then it calls CUES — 

This routine sets up equations (32).  In order to 

solve them it calls subroutine MATR.  Tht suggested 

corrections  Ax , Ay , Ap  , Ap   are printed, and 

the new values of  C(I)  I ■ 1,4 are set up. 

The subroutine ORBIT then decides if it has obtained a good 

enough periodic orbit.  It transfers this information to the 

main program by means of parameter Ml. 

FANPR — This subroutine prints all necessary information (which 

might be saved for long periods of time) about the true 

periodic orbit. 

The main program also punches (actually writes output tape 14) 

two cards which give u,x(0),y(0).Period,p (0),p (0)  in the format 
x    y 

required as input to the program. 

B.  Data input cards. 

There are 5 input cards required for each case.  Any number of 

cases may be run one right after the other. The cards are as 

follows:  (When a quantity is given as "c.bi^rary" it means that this 
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input quantity will never actually be used in this particular 

version of the program.  Of course, if one wishes to always 

use only this exact version of the program, subroutine RE36b 

could be easily changed so as to read only the quantities 

actually needed.) 

Card 1:  Forn.at (3D24.16)     p     x(0)      y(0) 

Card 2:  Format (3D2A.16)    Period  p (0)     p (0) 
x y 

Card 3:  Format (1^15)      M * no. of terms in Taylor series 

M2 » 4 or 20  (20 means variational 
equations also computed) 

M3 ■ no. of integration steps per 
printing interval 

M4 = arbitrary 

MS ■ arbitrary 

M6 » arbitrary 

M7 - 1 or 2 (2 means there is to be 
intermediate printing of varia- 
tional quantities) 

M8 » arbitrary 

M9 ■ max. no. of times subroutine POWER 
may be called (i.e., the max. no. 
of integration steps you wish to 
allow without giving up on ever 
getting to the end of the period). 

MIO = arbitrary 

L10 = Max. no. of times subroutine ORBIT 
may be called (i.e., how manv 
complete orbits are you going to 
allow; if  L10 = 0  it will run 
one orbit). 
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Card 4:  Format (7D10.2) 

Card 5:  Format (4D10.2) 

L9 « 0 or 1 (1 means CUES prints a 
dump of matrices and solutions) 

L8 ■ arbitrary 

L7 ■ arbitrary 

Cl ■ arbitrary 

C2 « arbitrary 

C3 ■ parameter used to help determine 
At.  (Making  C3  smaller tends 

to cut  At).  C3  is usually chosen 
between  .1  and  1.  and mostly 
about  .25. 

C4 ■ arbitrary 

C6 - arbitrary 

C7 ■ accuracy required in called orbit 
"periodic".  This is the allowable 
difference between any of the 4 
initial values of the dependent 
variables and corresponding values 
at the end of a period. 

C8 ■ arbitrary 

C9 « arbitrary 

CIO ■ arbitrary 

DTMAX ■ max. value of  At  you would ever 
want it to use 

DSMAX - arbitrary 

C.  Output 

Printed output depends on input parameters    M3, M7, and  L9. 

Subroutine RE36D always prints the input data it has read.  On 
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a new page will then come a table giving various orbital 

profiles.  (If M3  is very large, one may only get initial 

values and values at the end of a period).  The table will 

generally be in the format 

6X1 ty1 
«P1 r
x «P1 

y 
c1 

6X11 «y11 
II 

op A     H 6p 
y 

c11 

A    "I 6x A    HI 6y 
, III 
op rx 

A  m 
y 

c111 

r IV ox E IV 5y A     IV 6p rx 
A     TV 
6p 

y 
cIV 

6X1 ty1 «P1 
K
x «P1 

y 
c1 

6X11 «y11 x II 
rx 

A    U 5p 
y 

c11 

A     HI 6x A    HI 6y A     HI 6p rx 
x IH 6p 

y 
c111 

x IV 6x A    IV 
6y x IV 6p rx 

x iv 5p 
y 

cIV 

etc. 

Of course if M7 ■ 1,  there will be no intermediate printing 

of the variational solutions. 

At the end of an orbit which the program thinks» fs truly 

periodic (or even if it has been unsuccessful in really finding 

a good one), the six variational equation checks are printed. 
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(These are the residues obtained when checking in 

equations (19), and they should all be very close to 

zero). 

Next are printed two characteristic roots and the truce 

of the monodromy matrix.  Then are printed suggested 

changes in initial values as obtained as a solution of 

equations (32).  Then the new initial guesses are printed. 

If the program has been successful in finding an accurate 

periodic orbit, one will usually not be interested in 

these "suggested changes in initial valuts" or in the 

"new guesses". 

Fir.^lly  the program prints a  listing of   important  orbital 

parameters  suitable  for   saving  as a page   in a  book  of  orbits. 

If     L9  »   I ,     the  print   out  will   be  interspersed  with matrix 

print   outs  by  subroutine  CUES.     These are not   labelled,   and 

the  easiest  way  to  see what   they mean  is   to  read   the  program 

listing. 

Punched output always consists of two cards in format 

(3D24.16) giving for the latest orbit  u, x(0), y(0). Period, 

P (O), p (0). 
x     v 

D.  Results 

An example giving the print out for a particular trojar. orbit 

is given in the following pages. 
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Vin«fHjt|Nf   r«NP« 
mil ci r  pKffisiON «. *, c, n, (?, o, c*, rs. C6. ci, cc a, cid 

III.   II,   OlMAi,   r^mtt.   Et   r>t   ti.   Oi   f*.   (9.   f6,   (7.   F8.   F9.   flO, 
if,   I..   (1.   Ml,   i.-V,   f.Wlli   CMUC,   M,   P,   Ot   «.   S.    T,   Ut   Vt   W.   "I.   »if 
1«3,    X*,    XS,    X6,    KT,    «8.    «"»,    XIO,    Ylt    W,    YJ,    V*,    V5.    ¥6,    TT,    T«, 
«V9,   T|0,    /,    11,    12,    n,   Mi   /!>,   /6,    11,    I»,   /<>.    /10 

DIKtNStUN   »(SO,SOI,   8(501,   CISOI,   CISOI,   MSOIf   GMSO»,   1.11(501, 
ix(?oiO), yuoooi.  mon), SISOI 

CUMMON/S»'«/«,    V 
C0>'N0N/n»'»»/4,   *,   C,   Cl,   C2,   CJi   C*i   C5t   C6,   CT,   Cti   C9,  flO.   0, 

10T,  o\m,   nsa/u,   E,   fit   r?t   €i,   t*.   E5,   fb,   ET,   E«,   E9,   ElO,   r. 
?G>   f.l.    Gil,    f.NII.    GMK1,   GHUC.   H,    P,    Of   P.    S«    T,    U,    V, 
»n, «♦, xs,  x6, «7, xs, «<», xioi »i. »ii vj. »*# »*i 
«V9,   Y1C,   Z,   /I,   i?i   I),   H,   IS,   lb,   17,   l»,   /■»,   HO 

CO^MON/INTS/I ,    II,    J.   K.   »I,   K?.   K 3,   **,,   HS,   R6,   R 7, 

»6 
«I.   «2. 
Y7,    V8, 

IB,   19,   110, 
N),   M4,   »15, 

M8,   Rl,   RIO, 
M,    f\,   M7,   H3,   «♦,   M5, 
Ht,.   MT,   MB,   N9,   N10 

SUN 

U .   11 ,   t?,   II.   14,   15,   16,   17, 
2M6,   M7,   "«.    »O,   MIO,   N,   Nl,   M/, 

1 roBH*ri6'.Ho 
1   jiipirt«   » 

2 fORH*T(6JM0 EÄ* 
1TM   MOCN    I 

3 rOPKATlftSMO EOU 
1«L   MASSfS    I 

«   FURM«T(5 3HO *M   •   024 
1.161 

5 FO«HAT(53HO 
1.16) 

6 FORMAT IS^HO 
1.161 

7 FORMAT(56H00NE   OF    THE   CONJUGATE   COMPIF«   CHARACTERISTIC   ROOTS   IS 
120?«.161 

B   FORMAT(S6M0 
1202*.161 

9  FORMAT(56M0 
102*.Ul 

10 FORMATI109H0 
i p sun x 

11 F0RMATI17H0INITIAI   VAlUtS     «025.16I 
12 F0RMATI1TH0     FINAL   VALUES     6025.161 
13 FORMATdMCI 
14 F0RMATI3bH0INtT|A| 
15 FORMATI7SM1 

1   TMRFF    ROOY   PRUHlfMI 
MRITt16,151 
|F(GMU-1.0-03120,20,25 

20  HRITF16,11 
60   TP   AO 

25   IF(GMU-.01250012^,28.30 
28  MRITF16,21 

GO  TO   60 
30   IF(GMU-.500160.35,60 
15  HRMt 16,31 
60  HRITF Ift.OGMU 

JACOB I   CONSTANT   ■  026 

PERIOD   ■   026 

THE   TWO  RFAl   CHARACTERISTIC ROOTS   ARE 

THE IRACE   HAS 

II 
P   SUB  V I 

DX/DT   AND  OY/OT   VALUES   MERE 2026.161 
PLANE  RESTRICTED 

.1 

.3 
,6 
.6 
.7 
.8 
.10 
.11 
.12 
.16 

.2 

.9 

.1) 

.19 .1* 

66 

65 

50 
60 
70 

MRITt(6.5)C(5I 
MRITtIC,6IC5 
MRITt(6,131 
MRITt16,101 
MRITt l( ,11 Mf ( 11. 1*1.61 
MRITt (6,I?MB( I I, 1*1.61 
n«C(2l»C(3l 
/2«C(4l-r(1 I 
MRITt t6.|6U1.22 
IF    IM?-*I   66,70,66 
MRITf    16,131 
IF(f(31 150.65,50 
MRITF 16.»If m.tm 
GO   TO   60 
MRITtI6.7IEI2),EI31 
MRITt (6,«»If ( 1 » 
RETURN 
ENO 

.IT       .IB .1« 

.20       .21 .22 
,ii       .26 
.29       .2« 
.27       ,28 .2* .90 .91 
.32       .93 .96 .99 .9« 

O*         .60 .61 

.69       .66 

|66       .67 .68 

.90       .91 .92 

.99       .96 .99 

BEGIN  ASSEMBLY 12.875 
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SUBKOUTINC Goes 
DOUBLE DECISION A. t. C. Cl. C2. CJ. C«. C5. Cft. CT. C«. C«. ClU« 

10. OT. DTMtl, DSMAI. I, Cl. E2. £1. E*. E5, Cfr. ET. Et, E%, Elü, 
?f. C. Cl. CII. GMU. GMUl. CMUC. N. P,   0. R, S, T. U. V. H. II. 12. 
31). I«. IS, 16. IT. IS, I«, 110. Tl, V2. TJ. V«. V5, *6. VT, Tl, 
4T«. T10. I. 21. 22. 23. 2«. 25. 26. 2T. 21. 2«. 210 
DIMENSION AtSO.SOI. B(90l. MtOI. EI90I. fl»OI. Cl(50l. ClieiOI. 
11120001. YI2000I. 2(100). SISOI 
COMMON/SPK/1. T 
COMMON/O^K/*. B. C. Cl. C. C). C*. C), C6. CT. CB. C«. CIO. 0. 

IDT. OIMAI. OSMAft, E. El. E2. E). E*. ES. 16. ET, EB. E9. E10. F, 
20. 61. CII. CMU, S«U1, GMUC. M, », 0. K. S. T. U, V. M. II, 12. 
)l). ts,   15. 16. IT, IB. I«. 110, Tl, r2, »i, V«, V5. V6. TT, YB. 
♦»«, »10, 2. 21. 22. 2). 2«. 2). 26. 2T. 2B, 29, 210 
COMMON/INTS/I, II, J, K. Rl, K2. R). R«. R5, R6. RT, RB, R9, RIO, 

11, LI, L2. L). 16, L5. 16. LT, LB. \H,   L10, M, Ml, M2, M), M«. MS. 
2M6. M7, MB. M9, MIO. N, Nl. N2. NJ. N4, N5, N6. NT. N«. N9. N10 

1   FORMAT()6H0SUC0ESTE0  CHANGES   IN   INITIAL   VALUES  6020.1)1 
?   FORMAT I5)H0E0U6TIONS   TO   BE   SOLVED  FO«   CHANCES   IN   INITIAL   VALUES   I 
)   F0RMATUH0019.12,6D20.UI 
7 DO  B   I»l,   6 

DO 8   J-2,   5 

8 AII.JI   ■   B(RI 
DO  9   1-1,   6 

9 All,i*ll   •   Afl,l*ll>l. 
DO   12   1-1,   6 

12   All,61   ■  CII>-B(I) 
IF   119)   IB,   IB,    16 

16   WRITE   16.21 
MRITE   I6.3M(AII.J),J>2.4I.I-1.6) 

IS   CALL  MATR 
IF   IL9I   29.   25.   20 

20   MRITE   (6.))IIAII.JI,J>2.6I,I>1,9) 

25 MRITE 16.1)12111.I>1.61 
21"0. ** 
DO )0 1-1.6 
22-DA6SI2IIII _ 
IF 111-221 2T.)0.)0 

2T 21-22 
SO CONTINUE 

IF 121-FI 50.90,)9 
3» M.5»F 

21-F/21 
DO 60 1-1,6 

60 2I1)-2(I)*21 
MRITE 16,11 (211).1-1.61 
CO IU 60 

50 F-21 
60 RETURN 

END 

.1 

.2 

.1 

.6 .5 .6 

.T 
• B .» 
.10 
.11 .12 
.13 
.16 .15 
.1* .IT • IB .1« 

.22 .23 
.26 
.25 
.26 .2T .2B .29 

.32 .33 
.)6 .35 .36 ,3T 
.3« 
.60 
.61 
• 62 
.63 
.6* .65 
.66 
.6T 
.6B 
.6« 
.50 .51 
.52 .53 .56 .55 
.5? 
.5B 
.59 
.60 

.20 

.iO 

.3B 

.21 

31 

.56 
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6 
7 
e 

u 
12 
13 
I* 
IS 

150 

lib 

15T 
16 

20 

SUM OUT I HE 
DOUBLE    ODE 

10.   OT,   OT* 
if t   Ci   01 
}»>,     t«,     15 
*»«,   »10,   I 

DIMENSION 
1112000).   v 

CO"«»ON/SP« 
CO«M»0N/Df»« 

10T, TTH»», 
26. 01. Gil 
}»», 14, 15 
♦T9, V10. i 

COMMON/INT 
U,   U.   L2i 
2M6,    MT.    M8 

1    FOftHAT    ||H 
)   CALL    'OME« 

CALL   SETOT 
T»T»0T 
C*Ll    Sf.TP« 
IF    IN*I    T , 
CALL    PRNT 
IF    (N<>)    11 
IF    «MM    S. 
«2-* 
L10-0 
IF    t*2-*l 
CALL   ENOOK 
IF    IL10I   2 
21-0. 
00   152    1-1 
L2m   OAOSIC 

F    (21-22> 
21*22 
CONTINUE 
IF    «21-C7I 
mimo 

DC   15 7   !•' 
Cl I i'2( I > 
110-LlO-l 
«EfURM 
«I   "   1 
60   TO   16 

.mo 

ORBIT 
CISION A, B, C, Cl, C2. C3. C«, C 
Al, nSMAI. (, El, E2, EJ, £4, E5, 
Oil. GMU, CMUl, GMUC. H, P. U. R, 
. 16, If, 18, X9, (10, VI, V2, V} 
I 21. 22, 2), 24, 25. 26, 2T, 2«, 
AI50.5ni. »1501, CI50I, EI50I, F| 
(20001. 2(1001, $1501 
/M. * 
/»•   B.   C.   Cl-   C2,   CJ.   C*-   C5.   CA. 

OSNAI. E. El, E2, f). 16, E5, E6 
. OMu, G*U1, CHUC, H, P, Q, K, s, 
, 16. 17, IB, 19, 110, VI, V2, V} 
. 21. 22. 2), 26, 25, 26, 27. 28. 
S/l,    11.    J.    K,    Kl.    K2,    K),    K6,   K5 
L3, 16, 15, L6, IT, LB, L«, L10, 

. M9. MIO. N, Nl, N2, N3. N4, N5, 
02021.16.028.16,021.16,028.16 1 

7,   6 

.   11,   8 
5,   12 

13.16.13 

0.20.15 

.6 
I n-niin 
150.152,152 

20,20,155 

5,   C6,   CT,   CB,   C9,   CIO. 
E6,   ET,   EB.   E9,   E10. 
S.   T,   U.   ¥.   M.   II.   12. 

,   V6,   V5,   V6,   VT,   VB, 
29.   210 

50).   01(501.   GI I (5W. 

CT.   CB.   C9.   CIO.   0. 
,   ET,   E8.   E9.   E10,   F, 

T,   U,   V,   H,   II,   12. 
,   V6,   V5,   V6,   VT,   VB, 
29.   210 

.   16.   17.   KB,   H9,   MO. 
M,   «1,    M2,    M3,    M6,    mi, 
N6,   NT.   N8.    N9,    N10 

♦Cdl 

.20 

.25 

8E6IN   ASSEMBLV 16.886 
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SURROUTINE   POME« 
DOUBLE   PRECISION  «.   B,   C 

IDt    OT,   OTMtX,    OSMiiX,   E, 
?F.   Cf   CI,   Gil,   GMU,   GMUl 
313.   «♦,   I),   X6.   n,   IB. 
*V9.   VIO.   It   H,   12,   M. 

OI«fNSION   »('O.iO),   «150 
11(70001.   r(?OOOI.   21100) 
coMMON/sPR/i. y 
cn»««()N/opR/«. «. c, ci. 

IDT. Olf»«, OSHAX. E. El. 
20. Gl , GlI. GMU. GMU1. G 
3X3.   X4.   XS,   Xfc,   IT.   XB. 
*y«». no, z, n. Z2. zs, 

COMMON/lNTS/l.    II,    J,    K, 
11 .   11 ,   L2,   LI,   L*,   L5i   L 
2M6,   MT,   MS,   "9,   MIO,   N, 

DO   10   I>1,   M2 
10   «I 1.1 I   •   BID 

Zl   •   BIll^GMu 

.   Cl.   C2,   CSf   C*.   Ci,   C6,   C7.   CS.   C«.   CIO« 
El.   E2.   E3,   E4,   E9.   E6,   ET.   ES,   E«.   EID, 
,    GMUC,    M,   P.   Q,   R,   S.    T.   U.    V.   M.    XI,   X2. 
X9,   XIO,    Tl,   li,   »3,    »*.   »5.   T*.    T7.   TB, 
24,   2S.   26.   ZT,   2B.   2«.   210 
).   CI5C1,   EDO).   PISOI.   GlliOl,   GIII50I, 
.   SISO) 

Cl,   C3.   C4.   C5,   C6.   CT.   Ct«   C«.   CIO.   0. 
E2,   E3.   t*.   E5,   E6,   ET.   E8.   I»,   E10.   P. 

MUG,   H.   P,   0,   R,   S,   T,   U,   V.   M.   XI.   X2, 
X4,    XIO,    Yl,    Y2,    r3,    V4,    VS.    T«,    TT.    TB, 
24.   25.   26.   2T,   2B.   24.   210 
Kl,    R2,   R3,   R4.   R$.   R6,   KT.   RB,    R9,   RIO, 

6,   LT.    LB,   14.   L10.   M.    Ml.   M2.   MB.   M*.   M5, 
Nl,   N2.   N3.   N4.   Ni,   N6.   NT.   NB,   N4,   N10 

RI21.1) 
»127.1» 
»l/J.ll 
RI74.1I 
•(75.1) 
«176.1) 
»(■>C, II 

1<> 

2* 

Z1*Z1 
»(71 .1I*6I2I«B 
1.IRI22.1I 
l./l»(72.1IM. 
•GMU1*»(73.1)« 
GMU*»(?».1I*DS 
tl7&.n*»(26.1 

(21 

-21-211 
DSORI(»(73,i II 
C»T(»(7*, I I> 
1 

GO   TO    (70.1*1,   N? 
»(7T,1I 
»(76,1 I 
»174,11 
»MC, l i 
»(31.1) 
»(37.1 ) 
»(33.1) 

20 00 
LI 
L7 
21 
27 
23 

50   NM 
• N»l 
• M*2 
• 0. 
• 0. 
• 0. 

• 2l«B(7l 
• l.-3.*»(23.I)« 
• l.-3.«»(7<.. !)• 
■ »(23.1)*»(7T.l 
• »(2«,1I*(»I2T, 
■ »(25-<<«»(2B,1 
•(»I25,ll*»i30.1 

L 

»121.11 
(»(21.11*1.-21-211 
I 
1 )-6(2> I 
l*»(26.1 l*|(24,ll 
I*»:26.1l«»l3l.in*3.00 

»(l.N*l) 
»(7.N«1) 
00   2*   J"i 
R   •   L2-J 
21 ■ 
22 • 
23 - 
»(21, 
»122. 
24 ■   0. 
25 -   0. 
26 ■   0. 

&lI(*)•(»(3,N 
GIIINI*I»(4.N 
Ll 

1*«(1.J)*»(1.R) 
7*«(1.JI«»(7.RI 
3*»(2.J)«»(2.RI 

)«»(2.NI) 
)-»(l.N) I 

2.*GMU**I1,L1 

»I21,L1)«23 
l«21 

.1 
,2 
,* 
,5 
.6 
, i 
,* 
.4 
.10 
.11 
.12 
.19 
.16 
.15 
.16 
.17 
.IS 
.14 
.20 
.21 
.22 
.23 
.26 
.25 
.26 
.27 
.28 
.24 
.90 
.31 
.32 
.96 
.95 
.96 
.97 
.98 

.99 
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SUAftOUTlNf   MINT 
DOUBLE   PKCCISION   «t   Bt   C.   Cl.   C2,   CJ.   C*,   C9.   C6.   C7.   Ct.   C»,   CIO. 

10.   DT.   Di»»*«.   OSMAI.   i.   El.   E2.   E>.   E4.   E5.   E».   ET,   ES.   E«.   EIO, 
2F.   (,,   Cl.   Gil.   &*U.   &MU1.   GMUC.   N,   P.   C.   *.   S.   ft   U.   Wt   M.   11.   >2t 
)I3.   «♦,   It.   16.   n,   18.   X«.   «10,   Tl.   12,   V).   V4,   »5,   T4.   VT,   Tit 
*V9.   vie.   Z.   n.   12,   2).   2«.   Z9.   /6,   IT.   II.   2«,   210 

OIMENSIUN  «150.501.   eiiOI.   CtMl.   EtiOI.   fCiOI.   CHJOI.   611(50». 
11(20001.   YI2000I.   211001.   SI50I 
CO<»W)N/$P«/x,   * 
COMMON/DPR/A,   6.   C.   Cl.   C2.   CJ.   C«.   C5.   C*.   CT,   Cl.   C«,   CIO.   D. 

IDT.   OTPtt,   OS"*x,   E      El.   E2.   E3,   E4.   (5.   E*.   ET.   Et.   Et.   EIO.   P. 
2G.   Cl.   CM.   GMU.   &MU1.   GMUC.   H,   P.   Q,   ft,   S,   T,   U,   V,   M,   II,   (2, 
313,   14,   15,   «6,   XT.   18:   14.   110.   VI.   T2.   V3,   V«.   V5.   V4,   VT.   T8. 
«v<9,   TIC.   2,   21,   22,   23.   24,   25,   14,   2T,   28,   2«,   210 

COMNON/INTS/I,    II,    J.   K.    Kl.   K2.   R3.   K4.   K5.   K4.   KT,   KB,   R«.   RIO, 
U.   11,   1.2.   L3,   1.4,    L5,   L6,   IT,   LB,   19,   LlO.   *,    Ml,   H2,   N3,   N4,   M5. 
2Mb.   "7.   »8.   M9.   »10,   H,   HI,   N2,   N3,   H*,   MS,   M>.   NT,   N8,   N«,   N10 

1 FORMAT 11H0015.8.4020.12.023.191 
2 F0RM*T(5H 4022.14,023.191 

B 
20 

0 
B121*8(91 
BI4I-B(1; 
B(2)*BI2! 
IBI1)*GMU|»*2*21 
(Bll GMU1I*«2«21 
DVaRT124) 
0S0RTI/5) 
GPU*(2./2T*2 5)-Gmil«(2./24*24l-22»22- 
(6,1)1.   8(1i.   6121,   22,   23.   2« 

NT 

23*23 

n 
23 
21 
2* 
25 
26 
27 
29 
WHITE 
LJ  •   13*1 
1113)   •BID 
»Uii   ■   8(21 
CO TO   120.M 
24 ■   l./(24«26l 
25 •   l./(25«27» 
21   •   CPU*/^-GMUl*24 
26 >   B(4)-21*B(1I*GMU*CMU1«I24-29I 
2T   •   -6(J)-2l»8«2» 
00  B   1*1.   13,   4 
28  ■   -26*81 I*4)-2T*BII«5I«22*B<I*6I«23«BI1«TI 
MftlTE   (6,21B(I»4|,   B(I*5I,   811*6).   8(1*T»,   2B 
RETURN 
END 

.11 .12 

.29 .24 ,21 

BEGIN ASSEMBLY 09.619 
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.1 

.2 

.1 

.* 

,1 

•(GIN   ASSEMIUV 0).Rh<> 

ooiiBif PMCISION *, K. c. ci, c;, c). c*t c). c». cr, c», c«, cio. 
ID. or. ofMfti. OSMAI. r. rt- r*. r\, i«,  tv,  E«, IT, ft, i«, do, 
IF.   G.   Gl.   Gil.   CMU.   CMUI.   GMUCt   H,   P,   G.   d,    Sj   t,   U.   V.   Mi   II.   12. 
III.   14.   19.   16.   If.   II.   I«.   110.   T|.   11,   VI.   T«.   V9.   V*.   »I,   Tl. 
**<», »ic. /. n, 12. M. /♦. M. ib, n, i«. /«. ao 

OIMENSION ftoo.^oi. iti5oi. ciioi. mot, risoi. cutoi. CIIHOI. 
11(70001. vi;oooi. inooi. sifoi 
COMMON/^PH/I.    V 
COMMON/OPH/ft.   B.   C.   Cl.   Ci,   C).   C«,   C»,   C6.   C7,   Ci,   C«.   CIO.   0, 

ior. nrpfti. OSM*I.  E. CI.  ft, n. I«, n, c«. cr, n». c«. cio. ». 
?0.   Gl.   Gil.    CMU.    CMUl.    GMUC.   H.   P,    0.   «,    $,    T.    U,    V.    M.   II.    1}. 
113.   I*.   19.    16.    IT.   I«.    I«.   110.   T|.    fi,    VI,    V«.   VS.   V6.   VT,   VM. 
4V9.   V|0.   It   II.   12,   M.   I«,   19,   16.   I».   /•.   I«,   110 
COMMON/INfS/l.    II,   J.    K.   HI.   «2.   R),   «4.   R9.   K6.   «T.   ■••   ««.   110. 

11.   11.   12.    11.    I«.   19.   16.   If.   II.   14,   110.   M,   HI,    mi.   Ml.   N4.   M). 
2M6.   MT,   Mt,    M«,   MIO.   N.   Ml.   N2.   Ml.   N«.   N9,   N6.   NT,   H9,   M,   MIO 

2  rO«M»I(II2MI T I V 
1 OI/OT OV/Ot C      I 

»   •  0. .1 
NT   •   MT ,2 
I •  M-l .1 
II • 0 .6 
Nl • 0 .9 
N9 • 0 .6 
N9 ■ M4 ,T 
SHI • 1. .■ 
GMlll • GMU-I. .« 
GMUC • l.-GNU-CMU .10 
00   T   l«l,    * .11 

T  Bill   •   CtI» .12.11 
00  B   1*1.   M .1« 
C11 11   •   I ,19 

■ Gllli I   •   l./GM II ,16        .IT 
Ml   •   1 .IB 
If   IM2-»»   20.   20.   « .1« 

« N2   •   2 .20 
14  00   19   l>6.    1« .21 
19 BUI   •   0. .22        .11 

00   16   !•).   20.   9 .24 
16  BUI   •   I. .29        .26 
20 MRITF    16.21 ,11        .21 

Cftll   MM? .2« 
CIM*f4 .10 
•(TUBN ,11 
(NO ,12 

BEGIN  ft&SEMBlV 09.621 
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o. 

OI/OT OV/OT 

0.50<.0*6l n»"»*D 00 -0.«T*6«iMlT'»*n 00 -0.U9Hl/«l»*0Sn-0l -0.?*«*9lT6,U*in-0? 
1.000000000000000 00  0. C. 0. 
0. I.00000000000000b 00  0. 0. 

o.ioooormbtrmo oi 
-o. normjioo^o-o? 
O.liriOMI I%Ü1B0«D-0I 

0. 
0. 

0. 
0. 

1.000000000000000 00  0. -o.u<»<imi«*o«>no-oi 
0. 1.000000000000000  00   -0.rM*9ir*4M06/0D-0< 

O.I)«Mft;rO   0^     0.i»6l»«6T«l(l60-00   -{■.9*S«?0%OJ?I80   00   -O.blO^^flmi^OO-O?   -0. liOiOfCJft^'öO-O?     0. 10000 7J?66% 7 !♦ 10 
-0. je5M9SMIt9mn   02   -0.80066;999;8I fro   Ol      0.iSJ0550»2lC»66n   Ol    -0.1«6916*6MS59«n   Oi   -O.TU9TJT«190JI|90-0; 
0.?«30l*T?96«6;00   Oi      0. llfr|«5T|^260)9U   0?   -0.9*l*9;9«lJl* 700   01       0.?96«I09?7968960   Oi      0.I/7J088 11^0180*0-01 

-0. JOOiflOHS »691^0   o;   -0. mi;9*80091 110   Oi     U.89SS7J9JU797JO   01    -0. MIQbiiiiMiHO  Oi   -0. I ^98 I 28 1 8*0V8 70-01 
-0.1*5*88690^17711   Oi   -0.6)*)0?«2128«4>I0   01      0.«9361?866 Jl ?860   01    -0. 16?096J*99.'60»n   Oi   -0. 7*8*9 I 76S'»OS* 70-0«? 

UMDHriOM   AT    M^Oi   IN   MO 

01 

01 

UNOMriOM   »t    )/707   IN   »0 

UNOKFIUM *r  am  IN MO 

UNORFI OM   »I    II n?   IN  HQ 

UNDRFIUM   «T    W707   IN   *Q 

0.108*7)090   0?      0.JW**66?6?l00-00   -0.9?9|«*062*l*0   00      0.797?»*72871*0-0?     0.1617901101250-02      0.10('C07)?66»71*10 
-0.185897)91806760   02   -0.560)188^11566 70   01      0.8111*75685)9810   01    -0.1801980*7?0?610   02   -0.71*5 717*190121*0-02 
0.15)956009859580   Oi      0.I?•>//|122*98*70   0?   -0.1)6096*59*501*0   Oi      0. )*1812567969;90   02      0.U710881 i5317910-01 

-0.)558*707?7?9**D   0/   -0. I 108f9)90776*50   Oi      0.1*805015 7151/50   02   -0.13**15650*91900   Oi   -0.12981?818*052960-01 
-0.2101)5661*8**^0   Oi   -0. 8))|B97n9;i095D   01      0.8*97 761729/5600   01    -0.216727255011960   02   -0.7*8*917651*0*^90-02 

0.*6?U*/6D   0/      0.5)Ü)I5*?8?100   00   -0.8)58502968*90   00      0. U)?969665* 10-01      0. 760 1*92008 7?0-02      0.10000 71/66571*10   01 
-0.I51*/0'»l*0/675n   01   -0.92*9*68/110*070   00     0.512**2170991800   00   -0.1727*6*29179110  01   -0.71*5 717*19012 790-02 
0.11*276*55011*70   01      0.5/55 10)0*858)10-01   -0.2 7979 751*071620   01      0.281*8968182 7890   01      0.1271088115017950-01 

-0.1160*958*9**580   01    -0.2197586))217 «'OO-OO      0.820651679088920   00   -0.218*755226011*0   01    -0.129812818*ü52960-01 
-0.20)90)*86915l*0   üt     0.188 I 9)8H9119B9U-00     0.219767991029510   01    -0.212005011*50720  01   -0.7*8*917551*0*280-02 

0.616766660   0/      0.6)98 1)9*66 7)0   00   -C.7687819988610   00   -0.2*28*28107110-01   -0.1*29105650910-02      0.10000 71/66571*10   01 
0.11**91*0*6082/0   0/     0.1099*|**)*)9/7D   02   -0.9)0 786281916010   01      0.128*65152 7)1770  02   -0.71*'737* 1901)890-02 

-0.198*)5/89*;0180   0/   -0.16*156010995060   02      0.1707 7/760813810   02   -0.206332*8 7**38*0   02      0.12 7 3088115017880-01 
0. 1875 MOO/857/10   0/     0. 17*6*6*60385/*0   02   -0.161355*369)2500   02      0.21*217236)81*50  02   -0.129812818*05)050-01 
0.I08)*1001 17)680   0/      0.8865*98<.r99* )2D   01    -0.98858290 71)3100   01      0.11*820070562680   02   -0.7*8*91765 3*0)330-02 

0.77173*810   0/      0.5//)*/88)5*10   00   -0.8t 1800*)27*90   00   -0.12692992080 10-01   -0.7789182511*60-02      0.10000 71/665 71*10   01 
0.*285*771*187770   01      0.*2*0867*5896 )80-00   -0.28*671552*96060   01      0.212*29722171910  01   -0.71*5717*1903*120-02 

-0.80038697259*1*0   01    -0. 1*5512 I 2)*77970   01      0.*2)277/2729)090   01    -0.6)5***97*207720   01      0.127)088115018090-01 
0.89)5568868027*0   01      0.281206)'J I 226**0   01   -0.*8*82638*966730   Ol      0.5*55862)9*)5e80  01   -0.129812818*05)190-01 
0.6*888*02)87)970   01      0.)8))*7105252950   01      0.297*2968/712510  01      0.570126*53867500  01   -0.7*8*917653*05)10-02 

0.785971150   02      0.50'.0*6I))I 9*0   00   -0.8 7*68558179*0   00   -0.1298 12818*050-01   -0.7*8*91765 1*20-02      0.)00007)266571*10   01 
0.1)<»782*2190|900-00   -0.186228*^05*1280   01   -0.97500192*986010   00   -0.632313122 317010  00   -0.73*57 37*19033180-02 

-0.522901635/7)1'0   oi   -0.I I 796)*9590)8/ü-00     0.1)20*57080*7500  01    -0.2528*8052*02190  01     0.127)088115017920-01 
0.309)8**05581)70   01    -0.2*0 7 78*7)00 7 580   01    -0.11295 76*6)6 1)50   01       0. )0l 75*5099*6610-01    -0.129812818*052960-01 
0.57)66060)86*670   01      Ci.116640*u7)*1920   01    - 0.))*0802)28*1150   01       0. )1*88562*)89120   01    -0.7*8*91T65)*0)92O-02 

S   X    VARI4II0NAI    fOtliHON   CMfCRS   -0.191*90-11   0. 1 06580-I 2-0. 2661 00-11-0 . 1 16620-I 1   0.588*20-12   0.155790-11 
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CHARACIERISriC   EXPONFNTS f«»CI 

-0.9f'»*»0«>*6B6;i*n   00   O.;OI6in98Mr«n<.0-00 -0.979*S06*6i6?l«0   00-0.7016819(161 780*0-00 0. « 1098 7067 T» TJJO-OI 

SUCCfSrEO CHt^CfS IN INIIMI V*LUlS-0.?89«0i;i8T9l/O-01-O.1668I0?*ir90On-0J O.l617O84«6?6l8D-01-0.?8Jf;?f«/9|6Tn-OJ 

SUOGfSTfD CHtNOfS IN INIFMl V»IU€ S-0.1810 10^6» J0| 7O-0f-0. / J 96,»9«?S68F?0-0r 0. ? I »61*168 F58OO-0T-0. 3 H680«1* f ^2/0-0 T 

NCM   OUfSSfS 

0.90*04609)0908060   00   -0. 8T*68»60)'6 )8l«9li  00     0. 86 I TO* Wm*8 1*0  00     0. *9696l I T8I r;)8}D-00 

pi»Nf Rfsraiciro iMBfi  HOOT MUBIFM 

SUN JUPIri* 

**   • 0.'»iJ8TM5»|0TO868O-01 

jtconi ciiNMiNf   •      o. ioooor)?«6)M<>ioo 01 

P(*IU()   • 0. r8)9rii*86*99rT60   0/ 

« Y P   SUB   « P   SUP   V 

INITIAL   V»lUfS 0.»0*0*6M3l918)/)n   00      -0. 8?*68SS8l79)9*660   00        0.861T0*i999lJ*IT*D   00 0.*96)61219%*0*;610-00 

FINAl   V41UIS 0.50*0*6mi9**68Tn   00      -0.8r*bfl»»8l r91»8;iO   00        0.86|T0*^9«9»)0»66O   00 0.*96l6liH5*lO*6»0-00 

INITIAL   p«/0t   »NO   Ov/OI    V»lt»JS   Wfm    -0.1798178|8*0»?9;TD-OI    -0.T*8*9lT6»J*061 980-0? 

ONf    Of    TH(   rCNJU(.«lf   Ca»*PlFI   CH**«CrrMlsnC   ROUTS    IS -0.9r9*)06*68671 mo   OO      0.20I68)986)T80*010-00 

TMI    TRRC(    MRS 0.*l098T06;7»r;|990-0| 


